Check the row-wise equality of all input columns.
true
or false
.
Note that if the types of input columns are not compatible, the result will be False
for all
rows. Compatibility here means that input columns must be
keep_nans
below to control how the presence of NaNs affects the result.
Also, when performing numeric comparison, the parameters rel_tol
and abs_tol
can be used to check
for approximate equality. The desired tolerance (precision) can then be expressed either as a
proportion of a reference value; and/or as an absolute maximum difference). More specifically,
the equation used to check for numeric equality between values a
and b
is:
absolute(a - b) <= (rel_tol * absolute(b) + abs_tol)
.
Also see the parameter descriptions below, or the corresponding
numpy documentation
for further details.
Examples
num1
and num2
ds.first_name
), datasets (ds
or ds[["first_name", "last_name"]]
) or models (referenced
by name e.g. "churn-clf"
).
Inputs
Outputs
step(..., {"param": "value", ...}) -> (output)
.
Parameters
a
and b
must be smaller than or equal
to rel_tol * absolute(b)
for them to be considered equal.{true, false, "any", "all"}
:false
: use default NaN comparison. I.e. NaN == value => false
but NaN == NaN => true
.
Note that this means the result will never contain any NaNs.
true
or any
: the result will be NaN if any value in a row is NaN
all
: the result will be NaN if all values in a row are NaN.
any
all
True
False