At the moment the only supported clustering algorithm is Louvain. Louvain tries to identify the communities in a network by optimizing the modularity of the whole network, that is a measure of the density of edges inside communities to edges outside communities. The result is a column of cluster IDs (integers), where the value -1 is reserved for nodes in very small clusters, which are grouped into a “noise” cluster.

Usage

The following example shows how the step can be used in a recipe.

Inputs & Outputs

The following are the inputs expected by the step and the outputs it produces. These are generally columns (ds.first_name), datasets (ds or ds[["first_name", "last_name"]]) or models (referenced by name e.g. "churn-clf").

Configuration

The following parameters can be used to configure the behaviour of the step by including them in a json object as the last “input” to the step, i.e. step(..., {"param": "value", ...}) -> (output).